New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.

نویسندگان

  • M G Francki
  • M Shankar
  • E Walker
  • R Loughman
  • H Golzar
  • H Ohm
چکیده

Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat.

Stagonospora nodorum blotch (SNB) caused by Stagonospora nodorum is a severe disease of wheat (Triticum aestivum) in many areas of the world. S. nodorum affects both seedling and adult plants causing necrosis of leaf and glume tissue, inhibiting photosynthetic capabilities, and reducing grain yield. The aims of this study were to evaluate disease response of 280 doubled haploid (DH) individuals...

متن کامل

Inheritance of Resistance to Stagonospora nodorum Leaf Blotch in Kansas Winter Wheat Cultivars

Stagonospora nodorum blotch, caused by Stagonospora nodorum (Berk.) Castellani & E.G. Germano (= Septoria nodorum (Berk.) Berk. in Berk. & Broome, teleomorph: Phaeosphaeria nodorum (E. Müller) Hedjaroude) can cause serious yield and quality losses of wheat (Triticum aestivum L.) in many countries worldwide (3,14,20). Yield losses caused by this disease have been reported as high as 40% in sever...

متن کامل

QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch.

Stagonospora nodorum blotch is an important foliar and glume disease in cereals. Inheritance of resistance in wheat appears to be quantitative. To date, breeding of partially resistant cultivars has been the only effective way to combat this pathogen. The partial resistance components, namely length of incubation period, disease severity, and length of latent period, were evaluated on a populat...

متن کامل

The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system.

The wheat tan spot fungus (Pyrenophora tritici-repentis) produces a well-characterized host-selective toxin (HST) known as Ptr ToxA, which induces necrosis in genotypes that harbor the Tsn1 gene on chromosome 5B. In previous work, we showed that the Stagonospora nodorum isolate Sn2000 produces at least 2 HSTs (SnTox1 and SnToxA). Sensitivity to SnTox1 is governed by the Snn1 gene on chromosome ...

متن کامل

Reevaluation of a tetraploid wheat population indicates that the Tsn1-ToxA interaction is the only factor governing Stagonospora nodorum blotch susceptibility.

The wheat Tsn1 gene on chromosome 5B confers sensitivity to a host-selective toxin produced by the pathogens that cause tan spot and Stagonospora nodorum blotch (SNB) known as Ptr ToxA and SnToxA, respectively (hereafter referred to as ToxA). A compatible Tsn1-ToxA interaction is known to play a major role in conferring susceptibility of hexaploid (common) wheat to SNB. However, a recent study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 101 11  شماره 

صفحات  -

تاریخ انتشار 2011